Cantor sets and dimension Problem set 2

1. Let $A: \{0, \ldots, b-1\}^2 \to \{0, 1\}$ be a $b \times b$ matrix with 0, 1 entries. Define $K_A \subset [0, 1]^2$ as

$$K_A := \{ (x, y) \in [0, 1]^2 : A_{y_j, x_j} = 1, \text{ for all } j = 1, 2, \dots \},\$$

where $x = \sum x_j b^{-j}$, $y = \sum y_j b^{-j}$ are *b*-ary expansions. Compute $\operatorname{Hdim}(K_A)$.

2. Let $S \subset \mathbb{N}$. Define

$$A_S = \left\{ x \in [0,1] : x = \sum_{j \in S} x_j 2^{-j}, \, x_j \in \{0,1\} \right\}.$$

(a) Show that

$$\overline{\mathrm{Mdim}}(A_S) = \limsup_{n \to \infty} \frac{\#\{S \cap \{0, \dots, n\}\}}{n}, \quad \underline{\mathrm{Mdim}}(A_S) = \liminf_{n \to \infty} \frac{\#\{S \cap \{0, \dots, n\}\}}{n}.$$

(b) Prove that $Pdim(A_S) = \overline{Mdim}(A_S)$. Use it to give an example of a set with

 $\overline{\mathrm{Mdim}}(A_S) = \mathrm{Pdim}(A_S) > \underline{\mathrm{Mdim}}(A_S) \ge \mathrm{Hdim}(A_S).^1$

Hint: Consider a covering of A_S by closed sets and use Baire cathegory theorem to show that one of them should contain a shift of some set A_T , where $T \subset S$, and $S \setminus T$ finite.

- 3. Let K be the attractor for the family of uniform contractions (T_1, T_2, \ldots, T_k) with the contraction ratios (r_1, r_2, \ldots, r_k) . Show that
 - (a) One can find $\varepsilon_0 > 0$ and 1 > C > 0 so that for any $x \in K$ and $\varepsilon_0 > \varepsilon > 0$, there is a sequence $j_1, \ldots j_l$ such that

$$T_{j_1} \circ \ldots T_{j_l} K \subset K \cap B(x, \varepsilon) \text{ and } r_{j_1} \times \cdots \times r_{j_l} > C \varepsilon.$$

(b) If $(B(x_j,\varepsilon))_{j=1}^N$, $\varepsilon < \varepsilon_0$ is a collection of disjoint disks with $x_j \in K$ then there is an attractor $K_1 \subset K$ for some family of uniform contractions satisfying Open Set Condition such that

$$\operatorname{Hdim}(K_1) \ge \frac{\log N}{|\log C + \log \varepsilon|}.$$

Hint: Use the uniform contractions constructed in the previous step for the disks $B(x_j, \varepsilon)$ to build the set K_1 . Use the estimate from the previous step to estimate the similarity dimension of K_1 .

(c) Conclude that $\operatorname{Mdim} K$ exists and $\operatorname{Mdim} K = \operatorname{Hdim} K$.

¹In fact, for the sets A_S we always have $\operatorname{Hdim}(A_S) = \operatorname{\underline{Mdim}}(A_S)$. It easily follows from the Billingsley's Lemma.

4. Let $E \subset \mathbb{R}^n$, $F \subset \mathbb{R}^m$. Show that

 $\operatorname{Hdim}(E) + \operatorname{Hdim}(F) \leq \operatorname{Hdim}(E \times F) \leq \operatorname{Hdim}(E) + \operatorname{Pdim}(F).$

Hint: Use Frostman's lemma for the first inequality. For the second inequality, first prove it with $\overline{\text{Mdim}}$ instead of Pdim.

- 5. Let $K \subset \mathbb{R}^d$ be a compact, $\alpha = d 2$, and μ be a (positive) measure with $\mu(K) = \mu(\mathbb{R}^d) = 1$. Show that $U^{\mu}_{\alpha}(x)$ is harmonic on $\mathbb{R}^d \setminus K$.
- 6. Show that for any $\alpha \geq 0$ and compactly supported positive μ , the potential U^{μ}_{α} is lower-semicontinuous, i.e.

$$\liminf_{x \to x_0} U^{\mu}_{\alpha}(x) \ge U^{\mu}_{\alpha}(x_0).$$

7. (a) Show that if a sequence of measures μ_n converges to a measure μ weak^{*}, then for any $\alpha \ge 0$, $I_{\alpha}(\mu) \le \liminf_{n \to \infty} I_{\alpha}(\mu_n)$.

Hint: First, you need to prove that $\mu_n \times \mu_n$ weak^{*}-converges to $\mu \times \mu$.

- (b) Show that for any compact set K there exist a probability measure $\overline{\mu}$ supported on K with $I_{\alpha}(\overline{\mu}) = V_{\alpha}(K)$.
- (c) Show that for any probability measure ν of finite α -capacity supported on K, we have

$$<\nu,\overline{\mu}>:=\int U_{\alpha}^{\overline{\mu}}d\nu(x)=\int U_{\alpha}^{\nu}d\overline{\mu}(x)\geq V_{\alpha}(K)$$

Hint: Consider $\nu_{\delta} := \delta \nu + (1 - \delta)\overline{\mu}$. Note that $f(\delta) := I_{\alpha}(\mu_{\delta}) \ge f(0)$.

- (d) Show that if a set E has zero α -capacity if and only if for any measure ν with finite α -energy, $\nu(E) = 0$. Use this property to show that, if $V_{\alpha}(K) < \infty$, the set $\{x : U_{\alpha}^{\overline{\mu}}(x) < V_{\alpha}(K)\}$ has zero α -capacity and $\overline{\mu}$ measure.
- (e) Derive that $U^{\overline{\mu}}_{\alpha}(x) = V_{\alpha}(K) \overline{\mu}$ -a. e.